ProB: Harnessing the Power of Prolog to Bring
Formal Models and Mathematics to Life

Michael Leuschel 20 and STUPS Group

Institut fiir Informatik, Universitat Diisseldorf
Universitatsstr. 1, D-40225 Diisseldorf
michael.leuschel@hhu.de

PRrROB is an animator, model checker and constraint solver for high-level
formal models. On the practical side, it can be used to ensure the safety of
critical systems. On the theoretical side, it strives to bring formal models and
mathematics to life. Formal modelling languages like B, Z or TLA+ provide a
mathematical approach to software and systems development. These languages
build on logic and set theory to enable convenient modelling of many safety
critical systems and algorithms. Their use is not confined to the academic world,
e.g., Alstom’s U400 product alone based on B is running on over 100 metro lines
and has 25% of the worldwide market share [I]. These high-level models are
transformed into executable software using a process based on proof, manual
refinement and low-level automatic code generators. Early validation of such
models used to be a challenge though; some researchers used to argue that high-
level models should not be executable [7].

This was the initial motivation for the development of ProB [8I9], a tool
to make high-level formal models executable. The challenge was overcome using
the power of PrologE in particular its co-routining and constraint solving capa-
bilities. PROB thereby enables users to bring their formal models to life, making
it possible to detect issues very early in the development process. In particular,
PROB enables domain experts, with no education in formal methods, to pro-
vide feedback based on their unique expertise. Over the years, the performance
of PROB has continually increased and was recently used [6] for the first time
to execute a high-level formal model in real-time to control trains (cf., Fig. .
PRrROB also provides many visualisation and verification techniques built on top
of its animation capabilities. Some of these features have been certified for use in
safety-critical applications according to the European norm EN 50128. In par-
ticular, PROB has been used by companies like Siemens, Alstom, ClearSy and
Thales, to validate the safe configuration of train systems all over the world (e.g.,
Paris metro line 1, Sao Paulo, Alger, Barcelona, Mexico, Toronto) [1].

PROB has also been used by many academics in teaching and research. It has
been cited over 1000 timesﬂ and is itself being used in several other tools, ranging

! The letters “Pro” in the name PROB also makes allusion to its reliance on Prolog,.

2 According to Google Scholar as of August 31%¢, 2022 there are 801 citations for
[8], and 455 citations for its journal version [9]. In addition, there are considerable
number of articles which use PROB but are not taken into account by Google Scholar,
as they cite only the web page or mention the tool’s name.

https://orcid.org/0000-0002-4595-1518

from domain specific modeling tools (Meeduse, Coda), university course plan-
ning (Plues), railway validation (SafeCap, DTVT, Olaf, ClearSy Data Solver,
Dave, Ovado), security analyses (B4MSecure, VTG), UML modeling (iUML,
UseCasePro), test case generation (BTestBox, Cucumber-Event-B).

P2 Train 2 following Train 1 (Lucy)
on the same occupied track section
but on different virtual subsections

"

ProB running in real-time animating a
formal Event-B model of the Hybrid-Level 3 principles
developed by a team from the University of Diisseldorf and Thales with support from ClearSy

Fig. 1. A video of DB https://www.youtube.com/watch?v=F jKnugbmrP4 with PROB
running a formal B model in real-time to control two trains and demonstrate the ETCS
Hybrid Level 3 concepts

Implementation PROB has been developed over around 20 years and was
initially developed in sicsTUs Prolog. The core of PROB consists of about 400
Prolog files containing over 150,000 lines of code along with a large test suite of
almost 7000 unit tests and more than 2000 integration tests. This strict testing
regime is important for certification. For end users, PROB provides multiple user
interfaces: a command-line interface (PROBCLI) for batch verification and data
validation, a Jupyter kernel [3] for notebook usage, a Java API, and a set of GUIs
(Tcl/Tk, JavaFX) for interactive animation, visualisation, and verification. All
of these interfaces share the same Prolog core.

Although development began over 20 years ago, PROB is still actively de-
veloped. It is certainly a challenge to keep an academic tool in development for
that amount of time; but the task was eased by the robustness of Prolog and
the excellent support provided by SICSTUS.

PROB has recently [4] been made compatible with SWI Prolog and We are
working to make it compatible with Logtalk and other systems like Ciao Prolog.

Challenge Almost all of PROB’s features, from animation to verification,
require constraint solving at the level of the underlying formal language, i.e,
for an undecidable mathematical language with existential and universal quan-
tification, higher-order sets, functions and relations and unbounded variables.

https://www.youtube.com/watch?v=FjKnugbmrP4

Moreover, PROB generally needs not just to find one solution for a predicate,
but all solutions, e.g., when evaluating a set comprehension. Similarly, for model
checking it needs to find all possible transitions to ensure that the complete state
space is verified.

Below we illustrate this with a simple predicate evaluated using PROB’s
Jupyter notebook interface. Observe, how the variable f is automatically recog-
nised as a (higher-order) infinite function and kept symbolic, while the set com-
prehension res of all square roots of 100 is computed explicitly. Also note that
f(2) denotes the (also infinite) squaring function and that all solutions for res
are computed, even though no finite bounds were provided for .

In [26]: f = Ae.(e€Y | Abase.(base€’ | baseske)) a res={x|f(2)(x) = 100}
Out[26]: TRUE

Solution:

e res = {-10,10}
o f=/% @symbolic + [Ae-(¢ € M | [+ @symbolic » [Abase-(base € Z | base™e))

The core of PROB solves these challenges by using co-routining (i.e., build-
ing on the independence of the computation rule of logic programming) to build
a constraint solver on top of CLP(FD) [2]. In particular, the kernel of PROB
contains various specific solvers, e.g., for booleans, integers, sets, relations, func-
tions, sequences, which communicate via reification and co-routines (see [5]).

Formal languages like B, especially when using Unicode syntax, are very close
to the way we write mathematics in text books and scientific articles. For exam-
ple, to colour a graph g with nodes N using four colours we simply stipulate the
existence of a colouring function in B: col € N - 1.4 AVY(z,y).(z — y € g =
col(z) # col(y)). This makes it possible to copy parts of, e.g., theoretical com-
puter science books into Jupyter enabling students to bring the mathematical
definitions to life with PROB [3].

Summary PROB is an animator, model checker and constraint solver for
high-level formal models. It has been developed over around 20 years and has
harnessed the power of Prolog to help users develop safe systems. PROB takes
away tedious choices, automatically detects subtle bugs, but still leave users
in control to interactively validate their models. A friendly user experience was
always more relevant for PROB than raw benchmark figures. For example, PROB
will catch overflows, deal with divisions by zero, and keep track of source level
information to visualise and explain errors to end users. We hope that we can
keep on improving PROB and that we have not yet reached the end of what
Prolog and formal methods have to offer. Indeed, we want to drive the idea
of formal models as runtime artefacts further (see Fig. [1)). The capabilities of
the constraint solver of course still be improved; maybe we can one day reach a
state of a human friendly “executable mathematics” language which can be used
by novice and expert alike. Safety will also play a crucial role in the future, in
particular with the increased use of artificial intelligence in autonomous systems.
Here, within the ongoing KI-LOK research project we are striving to certify
safety critical train systems using Al components with the aid of PROB.

A Appendix: Team

The first version of PROB was written by Michael Leuschel while in Southampton.
During that time Michael Butler, Edd Turner and Laksono Adhianto provided valuable
contributions. The first article on PROB was published with Michael Butler at FM’2003
[8]. In 2005 the development moved to Diisseldorf and the STUPS group. Over the years
many people from the STUPS have contributed to PROB. In alphabetical order these
persons are: Jens Bendisposto, Carl Friedrich Bolz, Joy Clark, Ivo Dobrikov, Jannik
Dunkelau, Nadine Elbeshausen, Fabian Fritz, Marc Fontaine, David Gelessus, Stefan
Hallerstede, Dominik Hansen, Christoph Heinzen, Michael Jastram, Philipp Korner,
Sebastian Krings, Lukas Ladenberger, Li Luo, Thierry Massart, Daniel Plagge, Antonia
Piitz, Kristin Ruthenkolk, Mireille Samia, Joshua Schmidt, David Schneider, Corinna
Spermann, Yumiko Takahashi, Fabian Vu, Michelle Werth, Dennis Winter.

B Appendix: Proposed Citation

The first conference article about PROB is [8]; its journal version is [9].

References

1. M. J. Butler, P. Korner, S. Krings, T. Lecomte, M. Leuschel, L. Mejia, and L. Voisin.
The first twenty-five years of industrial use of the B-method. In M. H. ter Beek
and D. Nickovic, editors, Proceedings FMICS 2020, LNCS 12327, pages 189-209.
Springer, 2020.

2. M. Carlsson, G. Ottosson, and B. Carlson. An Open-Ended Finite Domain Con-
straint Solver. In H. G. Glaser, P. H. Hartel, and H. Kuchen, editors, Proceedings
PLILP’97, LNCS 1292, pages 191-206. Springer-Verlag, 1997.

3. D. Gelessus and M. Leuschel. ProB and Jupyter for logic, set theory, theoretical
computer science and formal methods. In A. Raschke, D. Méry, and F. Houdek,
editors, Proceedings ABZ 2020, LNCS 12071, pages 248-254, 2020.

4. D. Geleflus and M. Leuschel. Making ProB compatible with SWI-Prolog. Theory
Pract. Log. Program., 22(5):755-769, 2022.

5. S. Hallerstede and M. Leuschel. Constraint-based deadlock checking of high-level
specifications. Theory Pract. Log. Program., 11(4-5):767-782, 2011.

6. D. Hansen, M. Leuschel, P. Korner, S. Krings, T. Naulin, N. Nayeri, D. Schneider,
and F. Skowron. Validation and real-life demonstration of ETCS hybrid level 3
principles using a formal B model. STTT, 22(3):315-332, 2020.

7. 1. Hayes and C. B. Jones. Specifications are not (necessarily) executable. Softw.
Eng. J., 4(6):330-338, Nov. 1989.

8. M. Leuschel and M. Butler. ProB: A model checker for B. In K. Araki, S. Gnesi,
and D. Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages 855-874.
Springer-Verlag, 2003.

9. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185-203, 2008.

	ProB: Harnessing the Power of Prolog to Bring Formal Models and Mathematics to Life

